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ABSTRACT

The eukaryotic linear motif (ELM http://elm.eu.org)
resource is a hub for collecting, classifying and
curating information about short linear motifs
(SLiMs). For >10 years, this resource has provided
the scientific community with a freely accessible
guide to the biology and function of linear motifs.
The current version of ELM contains �200 different
motif classes with over 2400 experimentally validated
instances manually curated from >2000 scientific
publications. Furthermore, detailed information
about motif-mediated interactions has been anno-
tated and made available in standard exchange
formats. Where appropriate, links are provided to re-
sources such as switches.elm.eu.org and KEGG
pathways.

INTRODUCTION

In recent years, our understanding of the nature of
protein–protein interactions has changed dramatically.
Intrinsically disordered protein regions (IDRs) have been
established as key facilitators of protein functionality

(1–4), and consequently, globular domains no longer
prevail as the sole purveyors of protein function. Short
linear motifs (SLiMs), a class of compact, degenerate
and convergently evolvable interaction modules, are the
predominant functional modules found in intrinsically dis-
ordered regions (5–7). Interactions mediated by SLiMs,
also referred to as linear motifs or MiniMotifs, have
been shown to direct many diverse processes, such as
controlling cell cycle progression, tagging proteins for
proteasomal degradation, modulating the efficiency of
translation, targeting proteins to specific sub-cellular
localizations and stabilizing scaffolding complexes.
Undoubtedly, more functions will be revealed in the
future as additional SLiM instances are characterized.
SLiMs are represented by a limited number of con-

strained affinity- and specificity-determining residues
within peptides that are typically between 3 and 11
amino acids in length (5,7,8). The compactness of a
SLiM results in low-affinity binding (typically in the low
micromolar Kd range) (7,9–12), and consequently, SLiMs
often mediate transient, dynamic and reversible inter-
actions. As a result of the limited number of binding de-
terminants in a short linear motif, novel SLiMs can readily
evolve de novo, adding functionality to a protein. The ease
of evolution of motifs has resulted in the proliferation of
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SLiMs that encode functions of broad utility and many
motif classes are ubiquitous, occurring in tens or hundreds
of proteins. Many pathogens have also taken advantage
of the intrinsic evolutionary plasticity of SLiMs by
mimicking host motifs to deregulate and repurpose host
pathways (13,14).
On a higher regulatory level, short linear motifs often

exhibit complex switching behavior by co-operating with
each other and with post-translational modifications to
facilitate switching between different functional states of
a protein, and thus, SLiMs function as key regulatory
modules that allow for context-dependent, integrative
regulatory decision-making (15–17).

THE EUKARYOTIC LINEAR MOTIF (ELM)
RESOURCE

The ELM resource was established in 2003 with the
mission to collect, annotate, classify and detect short
linear motifs (18). It consists of two main modules: A
relational database that stores all annotations and a pre-
diction tool that uses the stored data to detect instances of
short linear motifs in query sequences submitted by the
user. The annotated data are manually curated from
literature and made freely available to the scientific
community.
At its core, the ELM database consists of ELM classes

(grouped hierarchically into ELM types, see below) and
ELM instances: An ELM class describes the specificity of
a peptide-binding domain or domain family, usually
summarized in the syntax of regular expressions. For
example, the ELM class DEG_SCF_TRCP1_1 describes
the pattern DðSÞG:f2,3gð½ST�Þ, whereby the first three
amino acid positions (D,S,G) are fixed positions,
followed by a flexible gap of either two or three amino
acids of any type, followed by either an S or T residue.
In addition, the round brackets around the second and
last position indicate that these positions have to be
phosphorylated to have a fully functional motif. The
website for this ELM class (http://elm.eu.org/elms/
elmPages/DEG_SCF_TRCP1_1.html) summarizes current
literature on the motif, providing information about bio-
logical context, taxonomic distribution, a set of represen-
tative class instances, interacting protein domain(s), as well
as links to primary literature and additional resources.
Most ELM classes have at least one ELM instance

annotated, whereby an instance describes the

experimentally determined match of a regular expression
of an ELM class in a protein sequence. During annotation
of instances, focus is put on the curation of experimental
methods. Well-validated instances have been shown by
more than one method in more than one publication and
ideally include structural data and interaction information
in addition to cell assays. Transient over-expression experi-
ments on their own are not very trustworthy and have led
to many false positive motifs being reported (19).

The ELM resource has been updated significantly since
the last release (20), with 26 new ELM classes and 689 new
ELM instances, raising the total count to 197 ELM classes
and 2404 ELM instances (Tables 1 and 2).

More updates and changes are described in the follow-
ing sections.

NEW TYPES FOR ELM CLASSES

ELM classes were originally categorized into four differ-
ent types based on the function of the motif: Proteolytic
cleavage sites (CLV), general ligand binding sites (LIG),
sites for post-translational modification (MOD) and
sub-cellular targeting sites (TRG) [see Table 1 in Gould
et al. (21)].

The annotation of many additional ELM classes made
it both possible and necessary to introduce novel ELM
types to categorize motif classes in more detail. Ligand
binding classes describing docking sites or destruction
motifs have been grouped together as two new types,
DOC and DEG, respectively, raising the number of indi-
vidual ELM types to six. Docking motifs (DOC) can be
described as motifs that recruit a modifying enzyme using
a site that is distinct from the active site (22), whereas a
degron motif (DEG) is a specific region of a protein
sequence that directs protein polyubiquitylation and
targets the protein to the proteasome for degradation
(23). Technically, all docking sites and destruction
motifs belong to the ‘ligand binding sites (LIG)’ type;
however, grouping together motif classes of similar
function adds an additional level of discrimination.

NEW FEATURES

Interactions

For all ELM classes, the corresponding interacting
domain that recognizes the particular short linear motif

Table 1. Summary of data stored in the ELM databasea

Functional sites ELM classes ELM instances PDB structures GO terms PubMed Links

Total 127 197 2404 290 419 2132

By category LIG 103 Human 1391
MOD 30 Mouse 211 Biological process 217 From ELM class 976
TRG 23 Rat 115
DEG 15 Yeast 86 Cell compartment 95 From instance 1558
DOC 15 Fly 77
CLV 11 Other 524 Molecular function 107

aAs of September 2013.
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(SLiM) has been annotated (24). In addition, links have
been provided to Pfam (25) or SMART (26), where more
detailed information about the respective domain can be
found. Where possible, the community annotation feature
of Pfam has been used to curate each interaction domain
present in ELM as an ‘external link’ in Pfam/Wikipedia to
allow the user to easily jump between these resources.

Furthermore, for >700 ELM instances, the interacting
protein has been annotated and, if possible, the position of
the interacting domain as well as the affinity of the inter-
action has been curated. This information is presented in
the ELM instance detail page (see Figure 1) and can be
downloaded in either PSI-MI TAB or PSI-MI XML 2.5
format (16,27) (see links section on the ELM website).

ELMs involved in molecular switches

As key regulatory interaction modules, linear motifs are
tightly controlled and many motifs are conditionally

turned ‘on’ and ‘off’ depending on cell state. Pre-transla-
tional addition or removal of a SLiM-containing exon,
post-translational modification of the SLiM-containing
peptide, allosteric SLiM inhibition or activation and
SLiM binding site competition are amongst the most
common mechanisms to regulate linear motifs. The
switches. ELM database (15) is a resource dedicated to
the curation and representation of experimentally
validated motif-based molecular switches. It provides a
categorized repository of >700 manually curated, experi-
mentally validated instances of SLiM-based switch mech-
anisms collected from literature.
Each ELM instance that is part of a switching mechan-

ism annotated by the switches.ELM resource has add-
itional information shown on the ELM instance detail
page as indicated in Figure 1: A short description of the
switching mechanism is displayed with links to all partici-
pants as well as an illustrative scheme of the switching

Table 2. Novel ELM classes and number of associated instances (middle column) that have been added since the last ELM releasea

Identifier Numbers Description

CLV_C14_Caspase3-7 39 Caspase3 and Caspase7 cleavage site.
CLV_Separin_Fungi 4 Separase cleavage site, best known in sister chromatid separation.
CLV_Separin_Metazoa 5
DEG_APCC_TPR_1 22 This short C-terminal motif is present in co-activators, the Doc1/APC10 subunit and some substrates

of the APC/C and mediates direct binding to TPR-containing APC/C core subunits.
DEG_CRL4_Cdt2_1 6 This degron overlaps a PCNA interaction protein (PIP) box and is recognised by the CRL4_Cdt2

ubiquitin ligase in a PCNA- and chromatin-dependent manner.
DEG_CRL4_Cdt2_2 1
DEG_SCF_COI1_1 9 Degron motif binding to the COI1 F-Box protein of the SCF E3 ubiquitin ligase in a jasmonate-

dependent manner.
DEG_SCF_Skp2-Cks1_1 3 This phosphodegron uniquely requires a pre-assembled target recognition site composed of Skp2 and

Cks1.
DEG_SCF_TIR1_1 24 Degron motif present in Aux/IAA transcriptional repressor proteins binding to TIR1/AFB F-box

proteins of the SCF E3 ubiquitin ligase in an auxin-dependent manner.
LIG_APCC_Cbox_1 3 Motif in APC/C co-activators that mediates binding to the APC/C core.
LIG_APCC_Cbox_2 2
LIG_CAP-Gly_2 1 Short, partly aromatic carboxy terminal sequence found in the SLAIN group of microtubule-

associated-proteins.
LIG_EABR_CEP55_1 6 This proline-rich motif binds to the EABR domain of Cep55 and is involved in both cytokinesis of

somatic cells and intercellular bridge formation in differentiating germ cells.
LIG_MYND_2 3 Motif that mediates the interaction between MYND domain of AML1/ETO and co-repressors

SMRT and N-CoR.
LIG_MYND_3 2 A variant MYND binding motif found in the HSP90 co-chaperones p23 and FKBP38 interacting

with PHD2 MYND domain.
LIG_NBox_RRM_1 2 Amino terminal region on Far Upstream Element (FUSE) binding protein, which mediates the

interaction with FIR in order to recruit FIR to FUSE DNA.
LIG_OCRL_FandH_1 3 The F and H motif describes a 10-13-mer peptide sequence determined by a highly conserved

phenylalanine and histidine residue surrounded by hydrophobic amino acids. A complex of ASH
and RhoGAP-like domain binds the F and H motif within a hydrophobic pocket.

LIG_PAM2_2 4 Peptide ligand motif that directly binds to the MLLE/PABC domain found in poly(A)-binding
proteins and HYD E3 ubiquitin ligases, mainly via a common central core region and a
complementary C-terminal region.

LIG_SPRY_1 2 Peptide motif binding to the members of the SSB (or SPSB) family (SPRY domain- and SOCS
box-containing protein).

LIG_SUMO_SBM_1 39 Motif that mediates binding to SUMO proteins non-covalently.
LIG_SUMO_SBM_2 8 Inverted version of LIG_SUMO_SBM_1 that mediates binding to SUMO proteins non-covalently.
MOD_LATS_1 23 The LATS phosphorylation motif is recognised by the LATS kinases for Ser/Thr phosphorylation.

Substrates are often found toward the end of the Hippo signaling pathway.
MOD_NEK2_1 3 NEK2 phosphorylation motif; NEK protein kinases play a critical role in cell cycle control,

interacting with and phosphorylating several centrosomal proteins.
MOD_NEK2_2 0
TRG_PEX_2 2 Motifs present in peroxisomal import receptors important for binding to peroxisomal membrane

proteins (PMPs) or other peroxisomal import receptors.
TRG_PEX_3 1

aAs of September 2013.
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Figure 1. Screenshot of the ELM website showing details for an instance of the ELM class LIG_PTB_Phospho_1 in the human protein Integrin
beta-3 at position 767–773. Details about the instance are depicted on top, including a representation of the 3D structure PDB:2LIC showing the
instance bound by ‘SHC-transforming protein 1’. Below the instance evidence, which holds details about the methods used in the article, information
regarding the interaction between the linear motif and the domain can be found. Here, three interaction partners containing phosphotyrosine-binding
domains (PTB) are annotated: ‘talin-1’, ‘docking protein 1’ and ‘SHC-transforming protein 1’. Finally, the two schematics at the bottom illustrate the
involvement of this motif instance in molecular switching mechanisms.
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type. More details can be found at the switches.ELM page
(http://switches.elm.eu.org) by clicking on the illustration.

MOTIFS–COMPLEXES–NETWORKS

Motif-mediated interactions play an important role in
complex formation as exemplified by the multi-protein
complex ‘anaphase promoting complex or cyclosome’
(APC/C) E3 ubiquitin ligase. This complex is represented
by the novel ELM classes LIG_APCC_Cbox_1 and
DEG_APCC_TPR_1 complementing the existing entries
DEG_APCC_DBOX_1 and DEG_APCC_KENBOX_2.
APC/C controls the progression through the cell cycle
by ubiquitylation of cell cycle regulators and consists of
at least 13 subunits assembled into the major subunit and
two subcomplexes: One subcomplex consists mainly of
tetratricopeptide repeat (TPR) domain-containing
proteins (28), while the other subcomplex includes the
catalytic core with the cullin domain-containing subunit
Apc2 and the RING domain-containing subunit Apc11
(29). APC/C can ubiquitylate substrates only in the
presence of the WD40 repeat-containing co-activator
proteins Cdc20 or Cdh1, which are active at distinct
phases of the cell cycle. Binding of Cdh1 to the APC/C
is mediated by at least two motifs (Figure 2), a C-Box
possibly binding to the catalytic Apc2 subunit (31) and a
C-terminal IR-tail motif (32) (DEG_APCC_TPR_1)
binding to the tetratricopeptide repeat (TPR) region of
one subunit of the Cdc27 dimer and possibly additional
uncharacterized interfaces.

Destruction of substrate proteins is facilitated by inter-
actions with the bound co-activators, also mediated via
short linear motifs (called degradation motifs or
degrons), such as the well-characterized D-Box (33) and
KEN-Box motifs (34,35). Strikingly, Cdc20 itself contains
a KEN-Box, which is therefore recognized by Cdh1,
ensuring the temporal degradation of Cdc20 (36).

Several pseudosubstrates for APC/C have been
identified, which—while being able to bind to the APC/
C complex—are not ubiquitylated and thus function as
inhibitors of the APC/C complex (37). One example is
illustrated in Figure 2: The yeast ACM1 protein was
identified as a stable binding partner of Cdh1 and an in-
hibitor of APC/C-Cdh1 activity, containing three motifs
mediating binding to Cdh1 (38).

Taken together, these motif-mediated interactions of
the APC/C complex ensure the timely turnover of
numerous cell-cycle regulatory proteins, thus governing
eukaryotic cell cycle progression (39). We consider APC/
C to be an excellent paradigm for the domain-motif inter-
play that pervades cell regulation.

With the wealth of information available in the
ELM compendium, it is also possible to map these
data onto higher-level information systems such as the
KEGG resource (40). Figure 3 illustrates the human
phosphatidylinositol-30-kinase-(PI3K)–Akt signaling
pathway taken from KEGG (pathway-id: hsa04151). All
interactions that are motif-mediated and annotated in the
ELM resource have been mapped onto this pathway, with
colours indicating the type of ELM class. Although it is

likely that not all motif-mediated interactions are shown
(simply because of the fact that they have not yet been
annotated in ELM), the sheer amount of motif involve-
ment is compelling. Mappings of annotated motifs onto
other resources as shown in Figure 3 for a KEGG
pathway can broaden our understanding of the import-
ance of short linear motifs by allowing us to investigate
motifs on a broader scale and to inspect their role in
different regulatory pathways.

Webservices update

To allow users programmatic access to query the ELM
server, SOAP/XML web services had previously been im-
plemented (21). This system has been updated to a REST
service model (41), whereby the communication uses the
HTTP protocol/features to deliver structured data. Users
now no longer need a special client to talk to the server but
instead can use any browser or text-mode client (such as
‘curl’ or ‘wget’). Libraries to request and process HTTP
queries are an integral part of most programming

Figure 2. Motif-mediated regulation of APC/C function. Structure of
the yeast APC/C complex [EMD-1815, determined by Cryo-EM.
Figure generated with chimera (30)] with confirmed (full arrows) or
putative (dashed arrows) motif-binding sites indicated. Binding of
the co-activator Cdh1 (blue) to the APC/C is mediated by two
motifs: The C-terminal IR motif binds to the tetratricopeptide repeat
(TPR) region of one subunit of the Cdc27 dimer (green) and the C-Box
binds to the catalytic Apc2 subunit (yellow). The Apc10 (orange)
subunit also contains a C-terminal IR motif, which binds to the TPR
domain of the second Cdc27 subunit (green). Recruitment of substrates
or additional regulators such as the pseudo-substrate ACM1
(PDB:4BH6) also depends on motifs. The A Motif, KEN-Box and
D-Box bind to different sites on the WD40 domain of Cdh1. In
addition, the D-Box also contacts Apc10, which functions as a co-
receptor for this degron (31).
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languages, consequently programmatically retrieving and
utilizing the information provided by the ELM server
should be straightforward for bioinformaticians of any
skill level. A detailed list of URLs that can be used to
query ELM via REST can be found at the ‘downloads’
page (http://elm.eu.org/downloads.html). We encourage
users to send us feedback on the new methods as well as
suggestions for possible future features.

PERSPECTIVE

Over the 10 years of ELM availability, the ELM resource
has proven to be a valuable source of information for
bench biologists (42–46) as well as for bioinformaticians
performing computational analyses (47–51). It is now
very clear that linear motifs are central to the understand-
ing of cell regulation. Their co-operative interactions are
to be found in all regulatory protein complexes of the
cell. It does remain computationally challenging to
discover new motifs by in silico methods, although
progress is being made. Experimentalists continue to
report new motif discoveries. Because there seems to be
no drop in the rate of motif discovery, it can be
extrapolated that the �200 motif classes listed in ELM

is surely well short of the true number in eukaryotic
proteomes. We shall need to keep on counting for the
next 10 years and beyond.
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Molecular principles of the interactions of disordered proteins.
J. Mol. Biol., 372, 549–561.

12. Haslam,N.J. and Shields,D.C. (2012) Peptide-binding domains:
are limp handshakes safest? Sci. Signal., 5, pe40.

13. Davey,N.E., Travé,G. and Gibson,T.J. (2011) How viruses hijack
cell regulation. Trends Biochem. Sci., 36, 159–169.

14. Kadaveru,K., Vyas,J. and Schiller,M.R. (2008) Viral infection and
human disease–insights from minimotifs. Front. Biosci., 13,
6455–6471.

15. Van Roey,K., Dinkel,H., Weatheritt,R.J., Gibson,T.J. and
Davey,N.E. (2013) The switches.ELM resource: a compendium of
conditional regulatory interaction interfaces. Sci. Signal., 6, rs7.

16. Van Roey,K., Orchard,S., Kerrien,S., Dumousseau,M., Ricard-
Blum,S., Hermjakob,H. and Gibson,T.J. (2013) Capturing
cooperative interactions with the PSI-MI format. Database
(Oxford), 2013, bat066.

17. Van Roey,K., Gibson,T.J. and Davey,N.E. (2012) Motif switches:
decision-making in cell regulation. Curr. Opin. Struct. Biol., 22,
378–385.

18. Puntervoll,P., Linding,R., Gemúnd,C., Chabanis-Davidson,S.,
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